Eventstream Design Patterns | CONFIDENTIAL

EVENTSTREAM
DESIGN PATTERNS

Sources • Transformations • Destinations • Event Processing

Version 1.0 | January 2026

Table of Contents

1. Eventstream Overview
Eventstream in Microsoft Fabric enables real-time data ingestion, transformation, and routing. It provides a no-code/low-code experience for building streaming data pipelines.
1.1 Key Capabilities
1. Visual stream designer with drag-and-drop
1. Multiple sources: Event Hubs, IoT Hub, Kafka, Custom Apps
1. Real-time transformations: Filter, Aggregate, Join
1. Multiple destinations: KQL Database, Lakehouse, Custom
1. Built-in monitoring and alerting
1. Automatic scaling and management
1.2 Eventstream Components
	Component
	Description
	Examples

	Source
	Input stream of events
	Event Hub, IoT Hub

	Transformation
	Processing logic on stream
	Filter, Aggregate, Join

	Destination
	Output for processed events
	KQL DB, Lakehouse

	Derived Stream
	Branched stream for routing
	Route by event type

1.3 Use Cases
1. Real-time IoT telemetry processing
1. Application event streaming
1. Clickstream analytics
1. Fraud detection alerts
1. Operational monitoring
1. Live dashboards and KPIs

2. Sources
Eventstream supports multiple source types for ingesting real-time data.
2.1 Azure Event Hubs
Enterprise-grade event ingestion service.
1. High throughput: millions of events per second
1. Multiple consumer groups
1. Configurable retention
1. Partition-based scaling
Configuration
Source: Azure Event Hubs
Connection: Event Hub namespace
Event Hub: Name of the hub
Consumer Group: $Default or custom
Data Format: JSON (recommended)
2.2 Azure IoT Hub
IoT device connectivity and management.
1. Device-to-cloud messaging
1. Device management and provisioning
1. Built-in routing capabilities
1. Protocol support: MQTT, AMQP, HTTPS
2.3 Custom App (SDK)
Send events programmatically from applications.
// Python SDK example
from azure.eventhub import EventHubProducerClient, EventData

producer = EventHubProducerClient.from_connection_string(
 conn_str=connection_string,
 eventhub_name=eventhub_name
)

event_data_batch = await producer.create_batch()
event_data_batch.add(EventData(json.dumps(event)))
await producer.send_batch(event_data_batch)
2.4 Sample Data
Built-in sample data for testing and prototyping.
1. Stock ticker data
1. IoT sensor data
1. Website clickstream

3. Transformations
Apply real-time processing to event streams using built-in operators.
3.1 Filter
Select events matching specific criteria.
// Filter events where temperature > 100
WHERE temperature > 100

// Filter by event type
WHERE eventType = 'SensorReading'
3.2 Manage Fields
Add, remove, or rename fields.
// Select specific fields
SELECT deviceId, temperature, timestamp

// Add calculated field
SELECT *, temperature * 1.8 + 32 AS tempFahrenheit

// Rename field
SELECT deviceId AS device_id, temperature AS temp
3.3 Aggregate
Compute aggregations over time windows.
// Tumbling window aggregation
SELECT
 deviceId,
 AVG(temperature) AS avgTemp,
 MAX(temperature) AS maxTemp,
 COUNT(*) AS eventCount
FROM inputStream
GROUP BY deviceId, TumblingWindow(minute, 5)

Window Types
	Window
	Description

	Tumbling
	Fixed-size, non-overlapping windows (e.g., every 5 minutes)

	Hopping
	Fixed-size, overlapping windows (e.g., 5 min window, 1 min hop)

	Sliding
	Window that slides with each event arrival

	Session
	Groups events by activity with timeout gap

3.4 Group By
Group events by specified fields.
GROUP BY deviceId, location
GROUP BY deviceId, TumblingWindow(minute, 1)

4. Destinations
Route processed events to storage and analytics destinations.
4.1 KQL Database
Primary destination for real-time analytics.
1. Sub-second query latency
1. Optimized for time-series data
1. KQL query language
1. Retention policies
1. Best for: Dashboards, alerting, ad-hoc analysis
Configuration
Destination: KQL Database
Database: Select existing or create new
Table: Target table name
Data format: JSON or Avro
Ingestion mapping: Auto or custom
4.2 Lakehouse
Store events in Delta Lake for batch analytics.
1. Append to Delta tables
1. Schema evolution support
1. Integration with Spark
1. Best for: Historical analysis, ML training
4.3 Derived Stream
Create branch streams for different processing paths.
1. Route events to multiple destinations
1. Apply different transformations per branch
1. Filter events for specific consumers
1. Best for: Multi-tenant, event routing
4.4 Custom Destination
Send events to external systems.
1. Webhook endpoints
1. Azure Functions
1. Custom APIs
1. Third-party systems

5. Design Patterns
5.1 Pattern: Fan-Out
Route events to multiple destinations based on criteria.
Eventstream:
 Source: IoT Hub
 │
 ├── Filter: temperature events → KQL (hot path)
 ├── Filter: error events → Alert system
 └── All events → Lakehouse (cold path)
5.2 Pattern: Aggregation Pipeline
Pre-aggregate data before storage.
Eventstream:
 Source: Clickstream
 │
 ├── Aggregate: Page views per minute → KQL (real-time)
 └── Raw events → Lakehouse (detailed)
5.3 Pattern: Enrichment
Enrich events with reference data.
Eventstream:
 Source: Transaction events
 │
 └── Join: Customer lookup table
 └── Enriched events → KQL Database
5.4 Pattern: Late Arrival Handling
Handle out-of-order events.
1. Configure watermark for late arrivals
1. Buffer window for reordering
1. Drop or route late events separately
1. Monitor late arrival metrics

6. Best Practices
6.1 Design Guidelines
1. Start simple, add complexity incrementally
1. Use derived streams for branching logic
1. Pre-aggregate to reduce downstream load
1. Choose appropriate window sizes
1. Document event schemas
6.2 Performance
1. Partition source events by key
1. Use appropriate batch sizes
1. Minimize transformation complexity
1. Monitor throughput and latency
1. Scale partitions for high volume
6.3 Reliability
1. Enable checkpointing for recovery
1. Configure dead-letter destinations
1. Monitor event processing lag
1. Set up alerting for failures
1. Test with realistic data volumes
6.4 Naming Conventions
	Element
	Convention
	Example

	Eventstream
	es_[domain]_[source]
	es_iot_sensors

	KQL Table
	[entity]_raw or _agg
	sensor_readings_raw

	Derived Stream
	ds_[purpose]
	ds_alerts

Appendix: Document Information
	Document Title
	Eventstream Design Patterns

	Version
	1.0

	Last Updated
	January 2026

Page of
